

An Effective Secured Cloud Based Log Management
System Using Homomorphic Encryption.

A. Murugan

Assistant Professor,
Department of Computer Science and Engineering,

SRM University,
Tamil Nadu, India- 603203

Tarun Kumar Kala
Department of Computer Science and Engineering

SRM University,
Tamil Nadu, India- 600029.

Abstract- For any organization which depending on sensitive
data processing it is very important to maintain information
about every event occurring within the organization’s system
or network, these event details are called as log files. The log
files will able to record user activities, troubleshooting
problems and any policy violations. As this log files plays vital
role and also contains sensitive information, it should be
maintained very securely. The capital expenses will be very
immense to maintain log data for many organizations over
long period. The alternative economic solution is to
maintaining log files over a cloud database. Log files with
sensitive information over a cloud environment will leads to
challenges about confidentiality and privacy. In this paper, we
propose effective secure cloud-based log management and also
the use of homomorphic encryption as a solution for dealing
the issues to access a cloud based data storage.

1. INTRODUCTION
 A Log file is to record the detailed information of every
event of a system or application running in an
organization[1]. Log files are highly useful to find any
operational problems shortly they have occurred and also
able to useful information to resolve such problems. Log
files are also helpful in identifying the security incidents,
fraudulent activities, and policy violations. Logs contains
of sensitive information of an organization so there should
be some protection from malicious attacker.
1.1 Log Generation and Maintenance
There are some traditional protocols based on syslog to
generating logs. Some security extensions proposed such
as reliable delivery of syslog [2], forward integrity for
audit logs [3], syslog-ng [4], and syslog-sign [4], provides
either partial protection, or do not protect the log records
from malicious attacks. On other side the count, size, and
format of computer security logs have increased rapidly,
which needs of computer security log management—the
process for generating, transmitting, storing, analyzing,
and disposing of computer security log data. Organizations
facing a major problem with log management are to
effectively balancing a limited quantity of log management
resources with a continuous supply of log data. For any
organization log generation and maintenance can be
complicated by several factors, including a high number of
log sources; inconsistent log content, formats, and
timestamps among sources; and increasingly large volumes
of log data. Log management also need to achieve some
properties such as confidentiality, integrity, and availability
of logs. Deploying secure logging information to meet all

the above challenges cloud storage is best economical
alternative.

1.2 Delegating Logs to Cloud storage
It is highly advantage to use cloud as a medium of storage
with universality of accessing platforms and mostly of
minimal hardware requirements on user end. In cloud
environment everything is delivered as a service (Xaas)[6]
and there are three main service model :
 1. Software as a Service (SaaS) - This service is to

delivering software over the Internet, consisting of
software running on the provider’s cloud
infrastructure, delivered to a single or multiple clients
on demand through a thin client (e.g. browser) .

2. Platform as a Service {PaaS} - This provides the
flexibility for a client to build—develop, test and
deploy applications on the provider’s platform. In this
service PaaS-hoster provides the infrastructure besides
PaaS-provider provides the development tools and
platform to the end PaaS user.

3. Infrastructure as a Service {IaaS} -This offers on
demand access to resources such as networking,
servers and storage, can be accessed with a service
API.

There are four deployment models of cloud computing
based on ownership over infrastructure, this is where the
security issues raises.
1. The Public Cloud - This is the basic view of cloud

computing in general. It is usually owned by a large
organization makes its infrastructure available to the
general public over the Internet by a multi-tenant
model on a self-service basis. For the end user this is
the most cost-effective model leading to substantial
savings with attendant privacy and security issues
since the physical location of the provider’s
infrastructure usually traverses numerous national
boundaries.

2. The Private Cloud – In this model cloud infrastructure
is under a single tenant environment which may be
managed by the tenant organization or by a third party
within or outside the tenant premises. This model costs
more than the previous public cloud.

3. The Community Cloud – This model refers to a cloud
infrastructure shared by multiple organizations belongs
to a specific community, which may be managed by
any one of the organizations or a third party.

4. The Hybrid Cloud – This model is a combination of
any two (or all) of the three models discussed above

A. Murugan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2268-2271

www.ijcsit.com 2268

However user can choose any of the model based on his
requirements but the major security issues raises in cloud
computing are availability, data security, third-party
control, Privacy and legal issues based on the model, which
can be discussed in detail in coming sections.

1.3 Secure logging and challenges over a cloud.
 In light of the above issues in a cloud environment, to
provide a secure logging as service there are some desirable
properties to achieve:
1. Availability - This defines that the logs over cloud

storage must be available whenever it is required. This
is a major concern for cloud based database users.

2 Verifiability: This property is to check all entries in the
log are present and have not been modified. Each entry
must be verified its authenticity independent of others,
and also the entries must be linked together in a way
that makes it possible to determine whether any entries
are missing(forward integrity[3]).

3 Privacy: Log records over a cloud will be distributed
globally which raises issue of data exposure and
privacy.

4 Confidentiality: Log records should not be casually
searchable to gather sensitive information. Legitimate
search access to users such as auditors or system
administrators should be allowed. In addition, since no
one can prevent an attacker who has compromised the
logging system from accessing sensitive information
that the system will put in future log entries, the goal is
to protect the pre-compromised log records from
confidentiality breaches.

To meet all the above challenges a secure way log
generation--(extracting, transforming, encrypting) should
be needed. The typical choice to achieve all the properties
is applying Homomorphic encryption in log generation.

2. RELATED WORK.
If the log records are encrypted and stored in the cloud that
would effectively solve issues. However, if a user wants to
access the log data it needs to decrypting log data first, or
shipping it entirely back to the user for computation, So the
cloud provider thus has to decrypt the data first perform the
computation then send the result to the user which raises
the issue of privacy and confidentiality. This is where the
homomorphic encryption plays its role. Using
homomorphic encryption user able to carry out an arbitrary
computation on the hosted log records without exposing log
data to the cloud provider - computation can be done on
encrypted data without decryption. In homomorphic
encryption schemes it allows the transformation of cipher
texts C(m) of message m, to cipher texts C(f(m)) of a
computation/function of message m, without disclosing the
message.

2.1 System architecture
The complete system architecture of a cloud based log
management system is shown in fallowing Fig. 1..

Figure 1. System architecture of a cloud based log

management system example.

There are four major functional components in a cloud
based logging management system.
1) Log Generator: This is an computing device logging

capability that can able to generate log data over
organizations system or network. These generators
stores log data temporarily later they are pushed to the
logging client.

2) Logging Client or Logging Relay: This is to collect log
records generated by one or more log generators, and
prepares the log batches which it can be pushed to the
cloud for long term storage.

3) Logging Cloud: The logging cloud is a remote storage
and maintenance service to log data from multiple
organizations which are subscribed to service
providers. These cloud can perform queries--- delete
log data and log rotation only on authorized requests of
organizations.

4) Log Monitor: The major functionalities are to monitor,
review log data, generating queries to retrieve log data
and analyse log data retrieved log data from the
cloud.

2.2 Basic Process of log preparation.
 This log files preparation protocol contains three sets of
keys—Ai and Xi for ensuring integrity, and Ki ensuring
confidentiality. These keys are derived in sequential
manner starting with three master keys A0, X0, and K0. We
use a secret key cryptosystem to provide integrity and
confidentiality
The protocol begins with three randomly generated master
keys—A0 and X0, and K0. The Log records will be extracted
from authenticated client machine will be taken as series of
messages L1, L2 . . . Ln. value n is determined randomly.
1) Before any log data arrives at the logging client, the

logging client creates a special first log entry L0 = [TS,
log-Initialization, n]. It then encrypts this log entry
with the key K0 and computes the message
authentication code MAC0 = HA0[EK0 [L0]] for the
encrypted entry with the key A0. The client adds the

A. Murugan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2268-2271

www.ijcsit.com 2269

resulting first log entry for the current batch—
[EK0[L0],MAC0]—to the log file.

2) The logging client then computes new set of keys A1 =
H[A0], X1 = H[X0] and K1 = H[K1], securely erases the
previous set of keys and waits for the next log message
to arrive.

3) When the first log message L1 arrives, the logging
client creates a record M1 = L1 || HA1 [EK0 [L0]. It
encrypts M1 with the key K1, and creates a message
authentication code for the resulting data as MAC1 =
HA1 [EK1 [M1]. It also computes an aggregated
message authentication code MAC’

1=
Hn

X1[MAC0||MAC1 || n] . The log batch entry is [EK1
[M1],MAC1]. It then creates the next set of keys A2 =
H[A1], X2 = H[X1] and K2 = H[A1] and securely deletes
A1 and K1.

4) For every new log data Li that the logging client
subsequently receives, it creates log file entries [EKi
[Mi],MACi], where Mi = Li || MACi−1 and MACi = HAi
[EKi [Mi]]. It also creates the aggregated message
authentication code MAC’i = Hn-i+1

xi[MACi-1 || MACi]
|| n − i + 1. Once MAC’i has been generated, MACi-1 is
securely deleted. The client finally creates new keys
Ai+1 = H[Ai] , Xi+1 = H[Xi] and Ki+1 = H[Ki] and
securely erases the keys Ai, Xi and Ki.

5) After the client creates the last log entry Mn for the
current batch from the last log data Ln, it creates a
special log close entry LC = [EKn=1[TS, log-close ||
MACn],HAn+1 [EKn+1[TS, log-close || MACn]]], and
an aggregated message authentication code MAC'n-1. It
then securely erases the three keys used in this step and
uploads the resulting log batch and aggregated
message authentication code to the logging cloud as
one unit.

2.3 Achieving Anonymity
While the logging client uploads data to the logging cloud,
logging client has to be authenticated. Achieving
anonymity means the logging client should not be
identified over any of its transactions including the
authentication process. To maintain privacy and
accountability, we are using k-times anonymous
authorization protocol[7]. There are four different protocols
for anonymous upload, retrieval and deletion of log data.
Here assume that the logging client and also may be
logging cloud or other adversaries knows the public key of
the entity.
1) Anonymous Upload-Tag Generation: The log records

must be indexed by a unique key value to retrieve it
later, where the key value should not be exposed. This
upload-tag is will be generated by the logging client in
cooperation with the log monitor.

2) Anonymous Upload: After the logging client
authentication to the logging cloud in an anonymous
manner, the logging client sends a message contains
the upload-tag, a delete tag and a batch of previously
prepared log data. The delete-tag is used later to delete
or rotate the log data by any entity authorized by the
logging client if they need to do so.

3) Anonymous Retrieve: This protocol is to download log
data needs to send a retrieve request anonymously
together with the upload-tag respective to the desired
log data. The logging cloud process request gets and
sends data to the requester over the anonymous
channel. There is no need of authenticating the
requester as log batches being encrypted that can be
used by clients having valid decryption keys.

4) Anonymous Delete: To delete log data over cloud, the
requester needs to send a delete message to the logging
cloud. Then the logging cloud throws a challenge for
authentication to delete by presenting a correct delete
tag, which contains information that is used by the
logging cloud to index the message.

In a cloud environment the customer is unaware of where
his request is physically executed. The customer has to trust
the resource provider, because request is executed entirely
under the control of the resource owner and thus cannot
rely on the security and confidentiality of the remote
resource. There is a need for a mechanism to operate on
encrypted data, which can be achieved by applying
Homomorphic Encryption (HE)[8].

2.4 Applying Homomorphic Encryption (HE).
A homomorphism is a structure-preserving transformation
between two sets, where an operation on two members in
the first set is preserved in the second set on the
corresponding members[9].
Let P and C be sets denoting the plain-text space and the
cipher-text space, respectively where p1, p2 ߳ P, t a
transformation between the two sets with its reverse
function t’ and an operation ⨁. The system is said to be an
homomorphism, if ∀1݌, ,ܲ߳	2݌ ݐ = (2݌⨁1݌) If there are two functions ⨁ and ⨂, such .((2݌)ݐ⨁(1݌)ݐ)′
that ∀1݌, ,ܲ߳	2݌ ݐ =(2݌⨁1݌) ′൫(2݌)ݐ⨁(1݌)ݐ൯,(2݌⨂1݌) 	= 	 ݐ this is called an algebraic ((2݌)ݐ⨂(1݌)ݐ)′
homomorphism [6]. The range of transformation of the two
member’s p1 and p2 will be C, the result of decryption
back into the range of P.
To understand the homomorphic scheme lets fallows an
example, where k ∈ N be a large prime integer as a secret
key and x and y be two arbitrary integers with (x, y) < k ∈
N. Then encryption of x can be done as x’ = x + (r1 * k)
with r ∈N being a large random integer. To get original text
x, x’ can be the decrypted as x’ mod k. here we can then
perform an encrypted addition as (x’+y’) which implies
(x’+y’) = (x+(r1*k))+(y+(r2 *k)) and x+y+(r1 +r2)*k and
when decrypted mod k yields (x+y). The multiplication is
performed as (x’* y’) = (x + (r1 * k)) * (y + (r2 * k)) and
x*y+x*(r2*k)+y*(r1*k)+(r1*r2)*k*k
mod k = (x*y).

Example: x = 5; y = 4; k = 23; r1 =6; r2 =3;
 x’ = 5 + (6 * 23) = 143;
 y’ = 4 + (3 * 23) =73;
x’ + y’ = 216; 216 mod 23 = 9;
x’ * y’ = 10439; 10439 mod 23 = 20

A. Murugan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2268-2271

www.ijcsit.com 2270

Though above satisfies the homomorphic encryption
scheme but there is a drawback, with every operation the
intermediate result grows towards the modulus and the
result exceeds the prime modulus k, then the decryption
fails. To overcome this we need to do normalization (would
be any function) that can minimize the remainder mod k of
the result while preserving the parity mod k, which can be
achieved by using advanced homomorphic schemes, such
as [10] and [11], base on Gentry’s approach of
bootstrapping a fully homomorphic.

3. SYSTEM ANALYSIS
The test system consists of two identical machines with a
2.13 GHz Intel Xeon E7 CPU and 128GB memory. Both
machines were running Fedora 15 64-bit Linux with
2.6.42.7 kernel and were stationed on the same LAN. The
first machine was running the logging client application,
while the second machine was running the syslog-ng
application that was configured to create fixed-size (100
bytes) log records

Figure 2. analysis graph for log management process.

For the log batches of sequential incremental in size, in first
upload and retrieve will be achieved with best performance
but further experiments it will gradually increases the
overhead computation of overall process which is shown in
Fig 2.

4. SUMMARY
Log management system is very important for proper
functioning of any organization’s information processing
systems. It is also very expensive to maintaining log data of
many organizations over long periods of time. Delegating
log data to cloud based data storage is an economic
alternative for this.
The ability to delegating log data to a remote resource
provider is a key feature in cloud based data storage. The
major problem in cloud environment is the fact that the
security and confidentiality of a remote resource cannot be
technically validated by the end user. In our case, we are
delegating log data which contains record of most system
events including user activities, which will be an important
target for malicious attackers. This becomes a high risk
factor to maintain the log data over a cloud environment.

In this paper, we propose an effective secured cloud base
log management system with required protocols and
methods that strengthen the security of query execution
over a logging cloud database. We used homomorphic
encryption scheme which enables a customer to generate a
query that can be executed by a third party, without
revealing the underlying algorithm or the processed log
data, which helps securing log data in a cloud based log
management system.

5. CONCLUSION
Current implementation of log management system with a a
method to perform the execution of encrypted query
operating on encrypted data. We discussed a simple
homomorphic encryption scheme as a reference model. The
basic homomorphic scheme will not achieve a effective
processing of queries over encrypted log data and also have
drawbacks such as to reduce the noise in cipher text space ,
which can be compensate by implement advanced
schemes, such as [10] and [11], base on entry’s approach of
bootstrapping a fully homomorphic from a somewhat
homomorphic system and provide addition and
multiplication plus a normalization procedure that is
supposed to allow unlimited chaining of operations in
cipher-text space. This technique of reducing noise in the
cipher-text space requires. So the future work for this paper
will be implementation of advanced homomorphic
encryption scheme which able to reduce the noise in
cipher-text space and computation overhead.

REFERENCE
[1] K. Kent and M. Souppaya. (1992). Guide to Computer Security Log

Management, NIST Special Publication 800-92[Online].Available:
http://csrc.nist.gov/publications/nistpubs/800-92/SP800-92.pdf

[2] D. New and M. Rose, Reliable Delivery for Syslog, Request for
Comment RFC 3195, Internet Engineering Task Force, Network
Working Group, Nov. 2001.

[3] M. Bellare and B. S. Yee, “Forward integrity for secure audit logs,”
Dept. Comput. Sci., Univ. California, San Diego, Tech. Rep., Nov.
1997.

[4] BalaBit IT Security (2011, Sep.). Syslog-ng—Multiplatform Syslog
Server and Logging Daemon [Online]. Available:
http://www.balabit.com/network-security/syslog-ng

[5] J. Kelsey, J. Callas, and A. Clemm, Signed Syslog Messages,
Request for Comment RFC 5848, Internet Engineering Task Force,
Network Working Group, May 2010.

[6] Aderemi A. Atayero*, Oluwaseyi Feyisetan “Security Issues in
Cloud Computing: The Potentials of Homomorphic Encryption” vol.
2, no. 10, October 2011

[7] I. Teranishi, J. Furukawa, and K. Sako, “k-times anonymous
authentication (extended abstract),” in Proc. 10th Int. Conf. Theor.
Appl. Cryptology Inform. Security, LNCS 3329. 2004, pp. 308–322.

[8] Craig Gentry, Fully Homomorphic Encryption Using Ideal Lattices,
STOC ’09: Proceedings of the 41st annual ACM symposium on
Theory of computing, DOI:10.1145/1536414.1536440

[9] Michael Brenner, Jan Wiebelitz, Gabriele von Voigt and Matthew
Smith Research Center L3S, Hannover, Germany”Secret Program
Execution in the Cloud Applying Homomorphic Encryption” ieee ,31
May -3 June 2011. [10] Marten van Dijk, Craig Gentry, Shai Halevi
and Vinod Vaikuntanathan, Fully Homomorphic Encryption over the
Integers, Advances in Cryptology EUROCRYPT 2010, Springer
DOI:10.1007/978-3-642-13190-5

[11] Nigel P. Smart and Frederik Vercauteren, Fully Homomorphic
Encryption with Relatively Small Key and Ciphertext Sizes, Public
Key Cryptography PKC 2010, Springer 10.1007/978-3-642-13013-7

A. Murugan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2268-2271

www.ijcsit.com 2271

